
DOCUMENT RESUME

ED 392 426 IR 017 717

AUTHOR Neff, Norman D.
TITLE A Logic Programming Testbed for Inductive Thought and

Specification.
PUB DATE 95
NOTE 5p.; In: "Emerging Technologies, Lifelong Learning,

NECC 195"; see IR 017 705.
PUB TYPE Reports Descriptive (141) Speeches/Conference

Papers (150)

EDRS PRICE MF01/PC01 Plus Postage.
DESCRIPTORS Classroom Techniques; *Computer Science Education;

Higher Education; *Induction; Mathematics Education;
*Programming Languages; Thinking Skills

IDENTIFIERS Inferential Comprehension

ABSTRACT
This paper describes applications of logic

programming technology to the teaching of the inductive method in
computer science and mathematics. It discusses the nature of
inductive thought and its place in those fields of inquiry, arguing
that a complete logic programming system for supporting inductive
inference is not only feasible but necessary. A sample dialog from
the Prologb system is included, along with an overview of the Prologb
language and some details about classroom experiences using the
system. (Author/BEW)

Reproductions supplied by EDRS are the best that can be made
from the original document.

U S DEPARTMENT OF EDUCATION
O.' cf. 5 FCCC,riervC

Researct, ane irrryovenv,i

EDUCATIONAL RESOURCES
INFORM., rION

CENTER (ERIC)
O This document has been reproduced as

received from the person or organization

onginating it

O Minor changes have been made to

tillpf Me reproduction quality

Points of view or opinions
stated in this

document do not neessarity represent

official OERI position or policy

A Logic Programming Testbed for
Inductive Thought and Specification

by Norman D. Neff

Paper presented at the NECC '95, the Annual National Educational
Computing Conference (16th, Baltimore, MD, June 17-19, 1995.

BEST COPY AVAILABLE

2

"PERMISSION TO REPRODUCE THIS

MATERIAL HAS BEEN GRANTED BY

Donella Ingham

TO 1HE EDUCATIONAL RESOURCES

INFORMATION CENTER (ERICI

paper
A Logic Programming Testbed for Inductive Thought and
Specification

Nortmm D. Neff
Department of Computer Science
Trenton State College CN 4700
Trenton, NI 08650-4700
(609) 771-2482
niffitrenton.edu

Key words: inductive inference, logic programming

Abstract
We describe applications of logic programming technology to the teaching of the inductive method in computer science

and mathematics. Ine:e;ctive inference is used in the sense of reasoning from sets of specific examples to plausible general
explanations. The paper treats the feasibility of supporting inductive inference through logic programming technology, and
argues that a complete logic programming system is required. We include a sample dialog, and discuss our classroom experi-

ence using the system.
Introduction

The paper describes applications of logic programming technology to the teachingof the inductive method in computer
science and mathematics. Section 2 is a general discussion of the nature of inductive thought and its place in computer science
and education. In Section 3 treats the feasibility of supporting inductive thought through logic programming technology, and

argues that a complete logic programming system is required. Section 4 is a sample dialog illustrating the Prologb system. An
overview of the Prologh language is provided in Section 5. Section 6 covers our experience using the system.

Inductive thought
The inductive method is the primary methodology of the physical sciences.The inductive method comprises two major

activities. When a phenomenon is encountered, a set of particular specimens is examined, and a conjectured general pattern is
formulated. The conjecture is then tested by attempting to make predictions based on it, and evaluating the reasonableness of
conequences of the conjecture. If the conjecture fails any test, the conjecbire is modified to encompass the new test observa-
tion. As the conjecture passes an increasing number of tests, its subjective likelihood of correctness increase's. When the
likelihood of correctness exceeds a certain threshold, the conjecture becomes a serious theory or model. In the physical
sciences, this means that ihe theory is accepted, until evidence contradicting it is found, or until it is replaced by a more
powerful theory that successf ully explains even more observations.

Mathematics, especially higher mathematics, is often regarded as a demonstrative, rather than an inductive, science. Early

in our mathematical education, we experience Euclid's axiomatic development. Geometry is presented as an exercise in pure
logic; in which a small set of axioms is progressively expanded to a complete body of theory. In fact, Euclid's work was the

synthesis of centuries of previous inductive, experimental geometrical discovers' [21. Polya [41 argues that the inductive

method is also a vital component of modern mathematics. New conjectures are spawned by observation of specific examples,
and by the mental processes of generalization, specialization, and analogy. Conjectures are then tested, resulting either in
rejection of the conjectures and formation of modified conjectures, or in increasing confidence in the conjectures. In the
mathematical context, the final test of a conjecture is the creation of a formal deductive proof.

Computer science is also subject to Polya's observations, because computer science is a mathematical science. Rigorous
mathematical theories underlie many significant areas of computer science, such as: algorithm analysis, artificial intelligence,

formal languages, graphics, language design, and database design.
With reference to "ordinary programming," there is some controversy as to the role of verification by rigorous mathemati-

cal analysis. Computer programs are typically developed through a highly inductive process of interleaved stages of design,
coding, and testing. Programs are expected to always perform correctly, for all possible inputs. Since the number of possible
inputs generally far exceeds the feasible number of test runs, no program's correctness can be guaranteed by testing, unless it

can he argued that the chosen suite of tests will uncover all errors. At any rate, it is clear that inductive thought is prominent in
programming, and that it must be supplemented, as in mathematics, by some final analytical stage.

Logic programming as a testbed for inductive thought
The ideal testbed for inductive thought would present the user with a series of specific examples. After each example, the

user would have the opportunity to revk'w the set of examples, and to form conjectures and predictions about the observed

process. At any time, the user should have the ability to test any of his predictions. Finally, the user should be able to fully

specify a proposed model for the process, and to observe the examples generated by her proposed model. So that many
examples can be efficiently cos ered, the instructor should be able to quickly configure the testbed to exhibit desired behavior.

Such a testbed could be used as a basis for discovery lectures, and for laboratory experiences.

N/ .q.5. innlie. Ali) Page 135

3

A candidate for the basis for the testbed is the logic programming language Prolog. The Prolog program is a database
containing logical clauses defining predicates. The Prolog system then acts as an acceptor/generator for the predicates. For
example, the clauses might define the predicate orderedList(L), meaning that L is an ordered list of integers, such as [1,3,4,6].
To genera'w ordered lists, one gives the system the input query consisting of the predicate symbol applied to an uppercase
logical var;ible, e.g. orderedList(X). The system then generates ordered lists one by one, as a byproduct of a theorem proving
algorithm. Ti.e system can also be used as an acceptor, whereby it is given the query consisting of the predicate symbol
applied to .1 specific object, e.g. c,rcieredtist((1,3,4,61). The response to this query is "yes", or "solution found". A remark-
able prc,perty of logic programming is that both behaviors, generator and acceptor, arise from one and the same logical
database.

Unfortunately, the l'rolog system is not adequate as a general inductive testbed. For technical reasons, Prolog uses a
search strategy that is incomplete, meaning that it may fail to generate some examples, and may fail to accept certain correct
examples. Correct use of Prolog system requires a certain amount of detailed knowledge of the Prolog search method. For this
reason, Prolog use is generally confined to specialized courses in which the study of the search method can be justified.

We have implemented an alternative, complete, logic programming system, known as Pro logb. In Prologb, all examples
are generated, and all correct examples are accepted. When the system is given an incorrect example, it may reject the example
or nonterminate. A theoretical result due to Church[1], stating that the general predicate calculus is algorithmically
undecidable, implies that this nontermination problem is inherent in all computer-based systems that encompass predicate
logic.

Using Prologb for Inductive Discovery: An Example
The following short sample dialog gives the flavor of the student interaction occurring as the system is, used. In practice,

more complicated situations can be explored by longer dialogs.
By running two independent copies of the acceptor/generator, the generation sequence in one window may be supple-

mented at will by tests in a second window.

1. The system asks for a query:
Query? (or command) :

To generate examples, we enter
example (X)

The successive examples generated are
X - nil

3. (Comment) the empty list
X - [a]

X [b]

4. (Comment) all lists f length 1 or less, using objects a and b
X = a] X [a , b] X - [b, a] X = [b,131

(Commc-nt) al 1 1 ists of lengt h 2 or less, using objects a and b, repeats allowed
X b,a1 X = [b,b,a] X = (a,a,a) X 1b,a,a1 X - [a,a,b]
X [b,a,b1 X = [a,a,a] X [b,a,a] X - [a,b,b] X = (b,b,b)

u. (:omment 1 ' of the F possible I ist:z of length three or less: missing 1 s fa, b, a]

X [b, b, .1, a) X H.., , t , , J , I)] X - ; b,b, a, a I X = [a, b, b, a]

...

(CONJECTURE) No 1 ist contains a, h,
Tc,r;1- ing [b, a,b31,

Quet y ; (or oomtmi nit

examplo (b, , b, a 1

no solut

"C(-t

cm,lit y (o t ,ommand) :

oxampl (b, b, a, b, hI)

tlo I lit ion t ound:

a sublist

Page 13b National athnial Computing Confereno% 1 995

The Prologb language
The syntax of the Prologb language is that of a subset of Prolog. For an overview, we refer to Figure 1, which contains a

simple Prologb program exhibiting the behavior seen in the previous section. The program is an acceptor/generator for the set
of all lists over {a,b} that do not contain the sublist fa,b,a1.

$aba not allowed

alpha (a) . alpha (b) .

example ([) .

example ((al) .

example ([b)) .

example ((A, Bl

example ([A, a X]
example ((b, b, a

example ((A,b,b

: -alpha (A) , alpha (B) .

) : -example ([a Yl) , alpha (A) .
I Xj) : -example ((b, a X]) .

I X)) : -example ((13, b I X]) , alpha (A) .

Figure 1
The first line, starting with the symbol "%", is a comment l!ne. The next nonblank line contains two facts stating that the

symbols "a" and "b" are the two objects satisfying the predicate alpha, that is, they are the two symbols in the alphabet. The
next three lines are facts stating that [1,[a], and [b] satisfy the predicate example. The fourth line

example([A,13]):-alpha(A),alpha(B).
is a rule containing the logical connective ":-" , which means if, and, on the right hand side, the connective "," which means
and. The identifiers starting with uppercase letters are universally quantified logical variables. Thus, the meaning of the line is
"For all A and B, the list [A,13] is an example if A is in the alphabet and B is in the alphabet". The remaining rules express
constraints on longer lists so that the sublist la,b,a1 may never appear. For example, the line

examplegb,b,a I X1:-example(Eb,a I Xl).
expresses the idea that any example list beginning with "b,a" may be expanded to another example list by adding a "b" at the

front. Since [a,b,al sublists are to be avoided, there is no rule permitting the additior of "a" at the front in such cases.

Experience using Prologb
We have used Prologb in several introductory and advanced mathematics and ccrriputer science courses, including

Discrete Mathematics, Compilers and Interpreters, and a new course, Discrete Structuros of Computer Science, which
explores structural concepts in the context of exploratory declarative programming. The Discrete Structures course was one
of three courses developed for a new curriculum that integrates mathematics with computer science, starting with entering
students' first course and laboratory experiences [5,61.

Prologb courseware has been developed in several problem domains, inciuding formal language theory, modeling
automata, semantic nets, general relations, graphs and digraphs, Peano arithmetic, and binary and modular arithmetic.

Online computer access to Prologb permits instructors to incorporate induction into classroom discussions. In general,
classroom demonstrations often elicit many conjectures from the group. In the inductive contex incorrect conjectures are

not "wrong answers"; they are a normal part of th . inductive process. Every incorrect conjecture leads an exploration of

its consequences, and that exploration then leads to a better conjecture.
The Prologb system is also a vehicle for laboratory experiences in computer science and mathematics courses. Examina-

tion of the lab reports indicates that beginning students were able to handle simple inductive exercises, in which students

are asked to enter various inputs into some prepared environment, and to then predict/explain the resulting output. In most

cases, students were also able to handle programming assignments, in which the goal was the creation of a new Prologb
program produce a desired result. The students were able to quickly assimilate Prologb because it is a language that simply

and faithfully executes logical specifications.

References
(11Church, Alonzo. A note on the Entsheidungsproblem. J. Symbolic Logic (1), 1936.

[21 Kneebone, G.T. Mathematical Logic and the Foundations of Mathematics. p 134. D. Van Nostrand, London.

[3] Neff, Norman. A Logic Programming Environment for Teaching Mathematical Concepts of Computer Science. SIGCSE Bulletin

25 (1), March 1993.
[4] Polya, George, Induction and Analogy in Mathematics, v.1 of Mathematics and Plausible Reasoning, Princeton University

Press, Princeton, N.J., 1954.
[5] Wolz, Ursula and Conjura, Edward. Integrating Mathematicsand Programming Into a Three Tiered Model For Computer

Science Education. SIGCSE Bulletin 26(1), Mkrch 1994.
[6] Wolz, Ursula and Conjura, Edward. AbstractionTo Implementation: A Two Stage Introduction to Computer Science. NECC

Proceedings '94
1Supported by National Science Foundation Grant DUE-9254108.

NECC '95, Baltimore, MD
Page 137

5

